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Abstract
We classified finite orbits of monodromies of the Fuchsian system for five 2 × 2
matrices. The explicit proof of this result is given. We have proposed a conjecture for
a similar classification for 6 or more 2 × 2 matrices. Cases in which all monodromy
matrices have a common eigenvector are excluded from the consideration. To classify
the finite monodromies of the Fuchsian system we combined two methods developed
in this paper. The first is an induction method: using finite orbits of smaller number
of monodromy matrices the method allows the construction of such orbits for bigger
numbers of matrices. The second method is a formalism for representing the tuple of
monodromy matrices in a way that is invariant under common conjugation way, this
transforms the problem into a form that allows one to work with rational numbers
only. The classification developed in this paper can be considered as the first step to a
classification of algebraic solutions of the Garnier system.

Keywords Fuchian system · Monodromy · Painleve equation · Garnier system

1 Introduction

Let us consider the Fuchsian system for 2 × 2 matrices:

Y (z) ∈ GL(2,C) : d

d z
Y =

⎛
⎝

n∑
k=1,ak �=∞

Ak

z − ak

⎞
⎠ Y .

Here ak are the branching points, i.e. pairwise distinct numbers on theRiemann sphere,
and the following condition for the matrices Ak is implied:
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Fig. 1 Monodromy loops

∑
k

Ak = 0.

Without the loss of generality we can put Tr Ak = 0,∀k and Y (z) ∈ SL(2,C) for
any z, and denote the eigenvalues as follows: eigen(Ak) = ± θk/2.

We can perform an isomonodromic deformation for this system, i.e. move the points
ak simultaneously with such evolution of the matrices Ak that the monodromy of Y
around the branch points is constant. It gives us the Schlesinger system for 2 × 2
matrices, or the Garnier system gn−3 (see [1, 2]), where ak are independent variables,
and the elements of matrices Ak are unknown functions. The number of independent
variables is n − 3, because we can fix three of the points ak as 0, 1, ∞.

Now let us introduce the tuple of monodromy matrices. For this purpose we
introduce the collection of loops γ1 ... γn , as in the Fig. 1. For each loop γk there
is the monodromy matrix Mk . The product of all monodromy matrices is equal to
unity: M1 M2 M3 ... Mn = I and the eigenvalues of each monodromy matrix are
eigen(Mk) = exp(± iπθk). Determinant of every monodromy matrix equals 1, due
to the fact that the trace of every matrix A is zero.

If the branching points move and interchange with each other, the loops braid and
the monodromy matrices are transformed by an action of the braid group (see Figs. 2,
3). We will call this process “braiding of matrices".

The global problem is to classify the algebraic solutions of this system. In this paper
we solve a related problem: we classify the finite monodromies of the Fuchsian system
which will be a step towards classification of algebraic solutions.

Def: We call the finite monodromy a tuple of monodromy matrices that gener-
ates only a finite orbit under braid group action up to a common conjugation of
matrices. ��

In order to define the braid group actions accurately let us introduce some rules and
notations. We declare that the case when all the branching points ak have real positive
values is canonical. In this case the loops γk are numbered from left to right. If the
branching points ak are not all real positive numbers, then the loops corresponding to
them are numbered in order of increasing absolute values |ak |, where the infinity is
considered to be the biggest in absolute value. In the case of equal absolute values the
corresponding loops are numbered in order of increasing Arg(ak). Here Arg is the
argument of the complex number lying in the interval (−π, π ].

The domain of definition of the Garnier equation is the universal covering of the
space of the parameters a1 ... an , which is (CP1)n , excluding the cases when any two
of the parameters ak , al coincide.
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Fig. 2 Braid group action B23 {M2, M3} �→ {M2M3M
−1
2 , M2} When the branching points interchange,

the corresponding loops braid

Fig. 3 Braid group action B32 {M2, M3} �→ {M3, M−1
3 M2M3}

Def: We introduce the term subbranch. The universal covering of the space of
distinct a1, ... an ∈ (CP1)n can be divided into n! parts, labelled by members of the
symmetric group Sn in the following manner: each collection of values a1, ... an can
be sorted as described above, and the permutation of order of indices correspond to
the element s of symmetric group. The exact condition that a point of the universal
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covering belongs to the part labelled by s is

s ∈ Sn : s(k) < s(l) ↔
|ak | < |al | OR al = ∞ OR (|ak | = |al | AND Arg(ak) < Arg(al)) .

Each such part is a disconnected space, and we call the connected components of
these parts subbranches. ��

For every subbranch we can introduce the objectM(n), which is an element of the
moduli space of the monodromy.

Def: The object M(n) is a tuple of n matrices and n integer values:

M(n) : {M1, M2 ...Mn ; N1, N2 ... Nn} ,

where M1 ... Mn are SL(2,C) monodromy matrices, defined up to a common conju-
gation, the product of all of them is the unity matrix and N1 ...Nn are distinct integer
numbers belonging to the interval [1, n]. Consequently, the objectM(n) is a member
of the following set:

M(n) ∈ SL(2,C)n−1/SL(2,C) × Sn .

Here each matrix Mk is the monodromy matrix corresponding to the loop γk , and
Nk is an integer defined as follows: if we denote the branching point corresponding to
the loop γk , as am , then Nk = m. And if the subbranch which this tuple of monodromy
matrices corresponds to, is labeled by the element s of the symmetry group, then γk
is the loop around the point as(k), and Nk = s(k).

We call the form of M(n) with N -values its long form, and its form without N -
values its short form. It will be enough to consider the short form only in the majority
of cases treated in the present paper. �

Therefore, the values N1...Nn are constant in every subbranch, and the monodromy
matrices are constant there up to a common conjugation.

Next, let us define the rule of moving from one subbranch to another.
If two neighboring branching points interchange, then loops corresponding to these

points braid and should be redefined to recover the normal form. In this case two
corresponding values N interchange, and two matrices M are transformed by braid
group action. The braid group action interchanges two matrices and conjugates one
of them with another one.

Wehave two types of such the actions, each interchanges twoneighboring branching
points, as illustrated in Figs. 2 and 3 respectively:

Bk,k+1 :{
M1, ... Mk−1, Mk, Mk+1, Mk+2, ... Mn;
N1, ... Nk−1, Nk, Nk+1, Nk+2, ... Nn

}
→

{
M1, ... Mk−1, MkMk+1M

−1
k , Mk, Mk+2, ... Mn;

N1, ... Nk−1, Nk+1, Nk, Nk+2, ... Nn

}
,
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Bk+1,k :{
M1, ... Mk−1, Mk, Mk+1, Mk+2, ... Mn;
N1, ... Nk−1, Nk, Nk+1, Nk+2, ... Nn

}
→

{
M1, ... Mk−1, Mk+1, M

−1
k+1MkMk+1, Mk+2, ... Mn;

N1, ... Nk−1, Nk+1, Nk, Nk+2, ... Nn

}
,

or briefly

Bk,k+1 : Mk → MkMk+1M
−1
k , Mk+1 → Mk, Nk ↔ Nk+1, (1)

Bk+1,k : Mk → Mk+1, Mk+1 → M−1
k+1MkMk+1, Nk ↔ Nk+1. (2)

The two indices of B are the numbers of braided loops and must differ by ±1. Infor-
mally we will call the braid group actions braiding.

It should be noticed that all features of the tuple of monodromy matrices are sym-
metric under cyclic permutation of matrices and N -values, hence index k ofMk matrix
may be treated as an integer modulo n. Thus, in total we have 2 n braid group actions.

Armed with these definitions, let us proceed to formulating the problem of finite
orbits of the tuples of monodromy matrices under braid group actions.

If the solution of the Garnier system is algebraic, then it has a finite branching.
Thus in order to classify the algebraic solutions we have to classify the finite orbits of
the braid group acting on monodromies.

The goal of this paper is a classification of all finite orbits of the braid group action
on monodromies.

Def:We call theM(n) triangular if all matrices have a common eigenvector, there-
fore can be made simultaneously to be lower-triangular. ��

Def: The orbit is the set of allM(n)’s, obtained from one of them, by the action of
the braid group. ��

We denote the M(n) which belongs to a finite orbit with a subscript F : MF
(n).

Note that M(n) and MF
(n) refer to fixed tuples of matrices, not to sets of all such

tuples. ��
Def: We will call the operation of replacing of two neighboring matrices by their

product (using the short form) the reduction from aM(n) toM(n−1). ��
Def: The inverse operation is the following: replacing any matrix by two matrices

where one of them is an arbitrary SL(2,C) matrix and another one is such that their
product equals the original matrix. We will call this to be an induction from a M(n)

toM(n+1). A special type of induction is an addition of the unit matrix. ��
The length of the orbit is defined as the number of branches in the transformation of

monodromy. In terms ofM(n) the length is the number of such members of the orbit
that their Nk’s have trivial permutation: Nk = k, ∀k. Therefore, the total number of
members of the orbit is length × n!. This definition of the length is the only reason
to defineM(n) to be not simply a tuple of matrices, but a tuple of matrices associated
with a tuple of numbers. The number of members of the orbit with different tuples of
matrices (not taking into account the permutations) is the number which is a multiple
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of the length and a divisor of length × n!. Nevertheless, we do not define the length
by this number, because such the definition would be mathematically unnatural.

Our problem is classification of all finite orbits. In this paper the problem has been
solved for M(5), excluding the triangular case.

It is important to note that there are some symmetries for M(n) which are not
equivalences: the cyclical permutation of all monodromymatrices (see 3); multiplying
any two matrices by −1 (see 4); taking inverses of all matrices, simultaneously with
reversing their order (see 5); complex conjugation of all elements of all matrices (this
symmetry will not be used in the paper):

M1, M2 ... Mn → M2, M3 ... Mn, M1; (3)

M1, ...Mp, ...Mq , ... Mn → M1, ... −Mp, ... −Mq , ... Mn; (4)

M1, M2 ... Mn → M−1
n , M−1

n−1 ... M−1
1 . (5)

Note that operation (3) can be represented as a series of braidings B1,2,
B2,3,...Bn−1,n . That is why every orbit is closed under this operation.

For n ≤ 3 the problem formulated above is trivial: any M(1), M(2) and M(3)

belong to the orbit of the length 1. Also, there exists a trivial method of transforming
of MF

(n) into M(n+1) (which also belongs to a finite orbit): this is achieved by
addition of the unit matrix. Note that for any n there exists a trivial case when all
monodromy matrices commute.

The problem posed above is solved for the case of n = 4 in [3]. That solution is
used in the present paper as a base for the construction finite orbits ofM(5)’s.

2 Signature formalism

Now we choose the most convenient formalism for classification of MF
(n)’s—

elements of the moduli space of the monodromy, which belong to finite orbits.
First, we note that it is better to notate MF

(n)’s not by elements of the matrices,
but by traces of different products of these matrices. This is because the common
conjugation, which is by definition a trivial transformation at the moduli space of the
monodromy, acts trivially on these traces, but not on the elements of matrices.

Further, since we are looking forM(n)’s belonging to finite orbits, the products of
their matrices are likely to be roots of unity, so their traces are likely to have a form

2 cos(πQ),

whereQmeans the set of rational numbers. Since for rigorous classification it is better
to operate with rational numbers, we propose a described below formalism.

Def: Signature. For each M(n) a special collection of values can be calculated. It
is called the signature.

The signature consists of sub-collections of the following values:
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(1) the θ value for any matrix:

∀x ∈ [1, n] : θx = 1

π
arccos

1

2
Tr (Mx ) , (6)

where the eigenvalues of Mx are exp(iπθx ) and exp(−iπθx ).
(2) the σ value for any subsequence of two or more neighboring matrices inM(n)

∀x ∈ [1, n] ∀y ∈ [x + 1, x + n − 2] : σx, x+1 ...y = 1

π
arccos

1

2
Tr

( y∏
z=x

Mz mod n

)
,

(7)

where theproduct
∏y

z=x Mz mod n has eigenvalues exp(iπσx ...y) and exp(−iπσx ...y).

(3) The σ value for any two not intersecting subsequences of neighboring matrices is
the following one:

∀x ∈ [1, n] ∀y ∈ [x, x + n − 4] ∀p ∈ [y + 2, x + n − 2] ∀q ∈ [p, x + n − 2] :

σx, x+1, ...y, p, p+1, ...q = 1

π
arccos

1

2
Tr

( y∏
z=x

Mz mod n

q∏
z=p

Mz mod n

)
. (8)

Anyway, every θ or σ depends on the trace of a product of matrices, and the tuple
of indices of θ or σ means the indices of these matrices.
Due to the definition, all θ ’s and σ ’s are determined modulo 2 and up to a sign.
The order of indices in σ is important, but the cyclical permutation of the indices
is treated as an equivalence:

σa,b,...c ≡ σb,...c,a; σa,c,b �= σa,b,c.

The following notations are also treated as equivalent:

θx ≡ σx+1,...x+n−1, σx,x+1,...y ≡ σy+1,y+2,...x+n−1. (9)

Indeed, Mx · Mx+1 · ... · My = (
My+1 · ... · Mx+n−1

)−1, so the corresponding
traces are equal. ��
Wecall the signature ofM(n) to be n-signature. The reason of using such formalism

is that θ and σ values for a MF are almost always rational numbers.
We call the signature inconsistent, if no tuple of matrices which corresponds to it

exists.
Each allowed tuple of indices in the signature we call the cell. If there is one index

(corresponding to a trace of one monodromy matrix)—the cell is called θ , if there
are more indices than one—the cell is called σ . We say that two tuples of indices
(x, x + 1, ...y), (y + 1, y + 2, ...x + n − 1) or x , (x + 1, ...x + n − 1) according to
(9) define the same cell.
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For example in the case of M(4), denoted as

M1, M2, M3, M4, M1M2M3M4 = I

the signature consists of eight numbers:

θ1, θ2, θ3, θ4, σ12, σ23, σ13, σ24.

In the case of n = 5 the signature consists of 20 cells, in the case of n = 6 it consists
of 39 cells, and in general for any n it consists of n(n − 1)(n2 − 5n + 12)/12 cells: n
of them are θ ’s and n(n − 3)(n2 − 3n + 8)/12 of them are σ ’s.

Def:We call by the particular signature a signature in which some cells are unde-
fined: no values for these cells are defined. ��

Def: We call by the incomplete signature a special case of the particular signature
when for some indices a, b such that b − a = ± 1 all the σ ’s which contain index a
and do not contain index b, are undefined, but the rest of cells are defined. In case if
there are two notations for one cell, (see 9) and at least one of them does not contain
a or contains b, then this cell must be defined. ��

In the incomplete signature all the θ ’s are defined, including the θa : although in
the θa the index a is present and the index b is absent, but the θa can be notated as
σa+1,...a−1.

In the n = 5 case the incomplete signature contains 16 cells.
The example of an incomplete signature for n = 4 with a = 1 and b = 2 is this:

we take all cells despite those which contain index 1 and do not contain index 2. The
σ12 = σ34 is defined; the σ14 seems to be undefined, but it is equal to σ23, which is
defined. The σ13 is undefined, and the σ24 is defined. In total, this incomplete signature
consists of seven values, and as it is known, it is enough to reconstruct all matrices up
to common conjugation, except for the triangular case.

We call bymerging of two particular signatures a procedure of making of them one
signature or particular signature by filling in the cells. It is impossible to merge two
particular signatures if they have at least one cell which is defined in both particular
signatures, but have different values. Value of the cell which is defined in both merging
particular signatures and coincide, or defined only in one—is retained; the cell which
is undefined in both signatures—remains undefined.

We say that two signatures, incomplete signatures or particular signatures coincide
if in all cells, which are defined in both of them, the values coincide.

Lemma 1 The signature (and also the incomplete signature) is sufficient for unique
reconstruction of M(n) (up to simultaneous conjugation), except for the triangular
case (where all matrices will have a common eigenvector, therefore can be made
simultaneously to be lower-triangular, because in this case the [2, 1] elements of
matrices can have arbitrary values and do not affect the signature).

Proof To generalize the proof for signature and incomplete signature, we re-formulate
the problem: there is a linear tuple of matrices, we know the traces of every matrix,
of every product of subsequence of neighboring matrices, and of the product of each
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two non-intersecting subsequences. For an incomplete signature, in which there are
undefined cells containing index a and not containing b, we consider a linear tuple of
all matrices except for Ma ; then, after the reconstruction of all other matrices, we will
be able to reconstruct Ma using the fact that the product of all matrices must make the
unit matrix.

To prove the lemma, let us consider three cases:

Case 1: The general case. In this case, there exists at least one pair of neighboring
matrices which have no common eigenvector. Let us call them Mp and Mq . The
non-existence of a common eigenvector can be checked using the condition

Tr(Mp)
2 + Tr(Mq)

2 + Tr(Mp · Mq)
2 �= Tr(Mp)Tr(Mq)Tr(Mp · Mq) + 4,

(10)

taking into account that both matrices have determinant 1.

Case 1a: The most general case is the most simple one: one of the above two
matrices, let’s Mp, has the trace not equal to ± 2.

TheMp can be diagonalized.Wemake simultaneous conjugation of all thematrices
such that Mp turns out to be diagonal with different diagonal elements.

Now we know all diagonal elements of all matrices: for any r �= p we have
Mr [1, 1] + Mr [2, 2] = Tr(Mr ) and Mr [1, 1]Mp[1, 1] + Mr [2, 2]Mp[2, 2] =
Tr(Mr Mp). This is the system of two equations for Mr [1, 1] and Mr [2, 2]. The
system has a unique solution because the matrix elements Mp[1, 1] and Mp[2, 2] are
the eigenvalues of Mp and are distinct by our assumption.

Then, due to the condition that Mp and Mq have no common eigenvectors, the
non-diagonal matrix elements Mq [1, 2] and Mq [2, 1] are both nonzero, and we can
perform such the conjugation that Mp remains diagonal and Mq [2, 1] turns 1.

Nowwe can reconstruct the non-diagonal elements of any othermonodromymatrix,
let us call it M , using the non-degenerate system of two linear equations:

M[1, 2]Mq [2, 1] + M[2, 1]Mq [1, 2]
= Tr(Mq · M)−Mq [1, 1]M[1, 1]−Mq [2, 2]M[2, 2], M[1, 2]Mp[2, 2]Mq [2, 1]

+M[2, 1]Mp[1, 1]Mq [1, 2]
= Tr(Mp · Mq · M) − Mp[1, 1]Mq [1, 1]M[1, 1] − Mp[2, 2]Mq [2, 2]M[2, 2].

Case 1b: Similar calculations can be performed in the case when Mp and Mq both
have traces equal to ± 2:

Let us consider the case TrMp = 2. This matrix can’t be unity, because it has
no common eigenvectors with Mq . That is why it is possible, using the common
conjugation, to put Mp to lower triangular form, with all non-zero elements equal
to 1. Since matrices have no common eigenvector then Mq [1, 2] �= 0. Moreover,
we can select such a conjugation that Mq [1, 1] = 0, and then Mq [2, 2] = ± 2 and
Mq [2, 1] = −1/Mq [1, 2]. Now we can reconstruct all elements of any other matrix
M using the system of equations:
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M[1, 2] = Tr(M · Mp) − Tr(M),

M[2, 2]Mq [1, 2] = Tr(M · Mp · Mq) − Tr(M · Mq),

and take M[1, 1] from TrM , and the M[2, 1]—from Tr(M · Mq ).

Case 2: There exist two non-intersecting subsequences of neighboring matrices
Mp, ..., Mq and Ms, ..., Mt (p ≤ q < s ≤ t), such that products Mp · ... · Mq and
Ms · ... · Mt have no common eigenvector.

Let us construct matricesMp ·...·Mq andMs ·...·Mt similarly to the Case 1. For any
r < p we reconstruct the elements of the matrix which is the product Mr · ... · Mp−1
similarly to Case 1, knowing the values of the following traces: Tr(Mr · ... · Mp−1),
Tr(Mr · ... ·Mp−1 ·Mp · ... ·Mq), Tr(Mr · ... ·Mp−1 ·Ms · ... ·Mt ), Tr(Mr · ... ·Mp−1 ·
Mp · ... · Mq · Ms · ... · Mt ), exact form of the matrices Mp · ... · Mq and Ms · ... · Mt

and the condition that they have no common eigenvector.
Hence we can reconstruct all matrices Mr for r < p.
In similar manner we can reconstruct matrices Mr for q < r < s and r > t .
Finally, for every r ∈ [p, q) we can reconstruct the matrix Mp · ... · Mr using the

known values of four traces: Tr(Mp · ... · Mr ), Tr(Mp · ... · Mr · Ms · ... · Mt ),

Tr(Mp · ... · Mr · Mp · ... · Mq) = Tr(Mp · ... · Mr )

Tr(Mp · ... · Mq) − Tr(Mr+1 · ... · Mq)

and in a similar waywe calculate the value of Tr(Mp ·...·Mr ·Mp ·...·Mq ·Ms ·...·Mt ).
This is the linear system of four equations for four variables (four elements of the
matrix (Mp · ... · Mr )) which has a unique solution due to the fact that two matrices
(Mp · ... · Mq) and (Ms · ... · Mt ) have no common eigenvector.

Therefore we know all matrices Mr for r ∈ [p, q] and, after the same procedure,
for r ∈ [s, t].

Case 3: Every two matrices and every two products of non-intersecting subse-
quences of neighboring matrices have a common eigenvector.

This case can be triangular only: all matrices have a common eigenvector.
Indeed, assume that this assumption is wrong.
First, in this case a monodromy matrix with only one eigenvector cannot exist

because this eigenvector would be a common for all the matrices.
Therefore, if there exist matrices with traces equal to ± 2, then they are propor-

tional to unit matrix (are scalar matrices), and we can exclude them, retaining our
knowledge about traces, and equivalently considering the case without these matrices.
If all matrices are scalar ones, then this contradicts the assumption of non-existence
of common eigenvector of all matrices, so we will assume that there exists at least one
non scalar matrix.

Then there remain only matrices with traces different from ± 2.
The matrix M1 can be made diagonal. Its eigenvectors are v1 and v2 (see 11). For

all other matrices one of these vectors is an eigenvector, but there exists at least one
matrix, let us call it Mp, for which v1 isn’t eigenvector (but v2 of course is), and at least
one other matrix, let us call it Mq , for which v2 isn’t eigenvector (but v1 is). Therefore,
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after excluding scalar matrices, the tuple contains at least three matrices M1, Mp and
Mq . The matrices Mp and Mq must have a common eigenvector, let us call it v3, and,
using the common conjugation not affecting v1 and v2, we can transform this vector
to the form (11):

v1 =
(
1
0

)
, v2 =

(
0
1

)
, v3 =

(
1
1

)
. (11)

Therefore, any other matrix must have a common eigenvector with M1, Mp and Mq ,
and that is why the eigenvectors of every matrix must be two of the three vectors v1,
v2 and v3.

It means that every matrix must belong to the one of three types (12), and for each
type there exists at least one matrix:

M =
(
eiπθ 0
0 e−iπθ

)
, M =

(
eiπθ 0

eiπθ − e−iπθ e−iπθ

)
,

M =
(

eiπθ e−iπθ − eiπθ

0 e−iπθ

)
. (12)

Then there must exist at least one pair of neighboring matrices belonging to different
types. Let it be Mr with the eigenvectors v1 and v2, and Mr+1 with the eigenvectors v1
and v3. But their product does not belong to any of three above types (to see thiswe take
into account that traces of all matrices differ from ± 2). The matrix (Mr · Mr+1) has
the eigenvector v1, but not v2 or v3. By the way, there exists at least one matrix of such
type that its eigenvectors are v2 and v3. This is Mp. It has no common eigenvectors
with (Mr · Mr+1).

Therefore the above assumption is wrong and it means that the considered tuple is
triangular: all matrices in the considered tuple have a common eigenvector.

Lemma 1 has been proven. ��
Notice: There exist inconsistent signatures for which a tuple of monodromy matri-

ces does not exist.
For every signature, or incomplete signature, we have three possibilities:

1. tuple of matrices does not exist (the signature is inconsistent),
2. there exists only one tuple of matrices and it has no common eigenvector for all

matrices (non-triangular case),
3. there existmany tuples ofmatrices, such that allmatrices have commoneigenvector

and can be simultaneously made lower-triangular (triangular case).

At a first glance, the signature contains excessive information about the collection of
matrices M(n). Indeed, due to its definition the collection of matrices M(n) has only
3n − 6 degrees of freedom. But the corresponding signature contains n(n − 1)(n2 −
5n + 12)/12 cells.

But if we use smaller tuple of σ ’s than defined in (7,8)—several discrete options for
reconstruction of the tuple of matrices remain. For example for the tupleM(4) we have
4× 3− 6 = 6 degrees of freedom. But if we use only six cells of the signature—four
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θ ’s and two σ ’s—two options remain. Anyway any smaller tuple of σ ’s will be not
enough for the Lemma 1.

This formalism is similar to formalism of p values developed in [4], and every σ

from the present formalism is

σ = 1

π
arccos(

p

2
).

.

3 The list of signatures ofMF
(4)’s

Here we present the list of 4-signatures which correspond to MF
(4)’s.

The present list is obtained by our computer program, and was compared with list
in the paper [3] (Theorem 1 and Table 4) to make sure that it is obtained correctly.

To shorten the list we present only one member of each orbit.
The present list differs from the list of [3] in the following four aspects: in majority

of orbits another element of the orbit is presented; here we present θ ’s, while two or
three different tuples of θ ’s can correspond the same tuple of ωx , ωy, ωz, ω4. That
is why the list turned out to be almost three times longer; notations σ23, σ13, σ12 are
used instead of rx , ry, rz ; σ24 is also presented.

Therefore, in this list, see Table 1 a signature with three parameters is presented,
which corresponds to any triangular tuple (it can correspond to different orbits of
M(4)’s); orbit 2 is obtained from the orbit ofM(3) with three arbitrary parameters by
addition of one unit matrix; then, there are the orbits 3 − 7 with two or one arbitrary
parameter; there are also orbits 8, 9 with two rational parameters, each orbit have the
length depending on the common denominator of its parameters (we write an estima-
tion of the length instead of the exact formula): 4 denominator2/π2 < length <

denominator2/2 + 1; and there are the orbits 10 − 131 with the following explicit
values. The list is presented in the Table 1.

4 Construction ofM(n)’s of higher order

Lemma 2 For each MF
(n) which will be notated as

M1, M2, M3 ... Mn

its reduction

(M1 · M2), M3 ... Mn

is aMF
(n−1)—it also belongs to a finite orbit.

Proof Herewe use the long form of theM(n). The starting point of the orbit we denote

M1, M2, ... Mn, N1 = 1, N2 = 2, ... Nn = n.
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Table 1 List of 4-signatures which generate finite orbits

� Length θ1 θ2 θ3 θ4 σ12 σ23 σ13 σ24

1 x y z x + y + z x + y y + z x + z x + z

2 1 x y z 0 z x y y

3 2 x 1/2 y 1/2 1/2 1/2 x + y x − y

4 2 x y x y + 1 1/2 1/2 2 x 2y + 1

5 3 2 x x x 2/3 1/2 1/3 1/2 3x

6 4 x x x 3x + 1 1/3 1/3 1/3 4x + 1

7 4 x x x 1/2 1/3 1/3 1/3 2 x

8 1/2 1/2 1/2 1/2 z y z + y + 1 z − y + 1

9 0 0 0 1 z y z + y + 1 z − y + 1

10 5 7/15 2/5 13/15 2/5 1/2 1/2 1/2 1/2

11 5 1/5 2/5 2/5 1/5 1/3 0 1/2 1/2

12 5 2/5 1/3 4/5 1/3 1/2 1/2 1/2 1/2

13 5 1 1 4/5 2/5 0 1/3 1/2 1/2

14 5 14/15 4/5 11/15 1/5 1/2 1/2 1/2 1/2

15 6 2/3 1/2 2/3 1/2 2/3 2/3 1/2 1/2

16 6 3/4 2/3 1/2 1/2 1/2 1/3 1/2 1/2

17 6 17/24 13/24 13/24 7/24 2/3 1/2 1/2 1/2

18 6 1 5/12 1/12 0 1/4 1 1/2 1/2

19 6 1/4 1/3 1/3 1/4 1/4 0 1/2 1/2

20 6 19/24 19/24 23/24 1/24 1/2 1/3 1/2 1/2

21 6 1/6 1 1/6 0 1/3 2/3 1/2 1/2

22 6 2/5 2/5 2/3 1/5 3/5 3/5 1/2 1/2

23 6 4/5 2/3 2/5 1/5 1/5 4/5 1/2 1/2

24 6 5/6 19/30 11/30 7/30 1/5 4/5 1/2 1/2

25 6 17/30 5/6 19/30 13/30 3/5 2/5 1/2 1/2

26 6 5/6 29/30 29/30 13/30 1/5 1/5 1/2 1/2

27 6 7/30 7/30 5/6 1/30 3/5 3/5 1/2 1/2

28 7 4/7 4/7 3/7 1/7 1/2 1/2 1/2 2/3

29 7 2/7 4/7 2/7 2/7 1/2 1/2 1/3 1/2

30 7 1/7 5/7 1/7 1/7 1/2 1/2 1/3 1/2

31 8 1/2 3/4 3/4 1/2 1/3 1/3 2/3 1/2

32 8 2/5 4/5 1/2 2/5 1/2 3/5 1/2 2/3

33 8 3/5 1/2 1/5 1/5 1/3 1/2 1/2 2/3

34 8 2/3 1/2 1/3 1/4 1/2 1/2 2/3 1/2

35 8 3/8 11/24 3/8 5/24 1/2 1/2 1/2 1/3

36 8 1/4 11/20 11/20 3/20 1/2 1/3 1/2 2/3

37 8 3/4 9/20 7/20 7/20 3/5 1/2 2/3 1/2

38 8 1/20 3/4 7/20 1/20 1/2 1/3 2/3 1/2

39 8 7/8 7/24 1/8 1/24 1/2 1/2 2/3 1/2

40 8 3/4 3/4 1 0 2/3 2/3 1/2 2/3
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Table 1 continued

� Length θ1 θ2 θ3 θ4 σ12 σ23 σ13 σ24

41 8 3/4 3/20 3/20 1/20 1/2 3/5 1/3 1/2

42 9 8/15 8/15 11/15 7/15 4/5 2/5 2/5 2/5

43 9 8/15 1/15 14/15 1/15 4/5 4/5 2/5 1/3

44 9 3/5 3/5 2/3 2/5 3/5 1/5 2/5 2/5

45 9 1/3 4/5 4/5 1/5 4/5 1/5 2/3 3/5

46 9 4/15 4/15 4/15 2/15 1/5 1/5 2/5 1/3

47 9 2/15 2/15 13/15 1/15 3/5 1/5 2/5 2/5

48 10 3/5 1/2 1/2 1/5 2/3 1/2 1/2 1/2

49 10 9/10 17/30 17/30 13/30 1/2 1/2 1/2 2/5

50 10 3/5 3/5 7/10 3/10 1/2 2/3 1/2 1/2

51 10 1/3 2/5 1/3 1/3 1/2 1/2 1/5 1/2

52 10 11/30 11/30 11/30 3/10 1/2 1/2 1/2 1/5

53 10 2/3 4/5 2/3 1/3 1/2 1/2 3/5 1/2

54 10 29/30 7/10 29/30 1/30 1/2 1/2 1/2 1/5

55 10 9/10 23/30 23/30 7/30 1/2 1/2 2/5 1/2

56 10 1/5 1/5 9/10 1/10 1/2 2/3 1/2 1/2

57 10 3/5 2/5 3/5 2/5 2/5 2/5 1/3 3/5

58 10 1 1 1 3/5 0 1/5 1/3 1/3

59 10 4/5 4/5 4/5 4/5 1/5 0 1/3 1/3

60 10 1 1 1 1/5 3/5 3/5 3/5 1/3

61 12 1/2 1/2 1/2 1/3 1/2 3/4 2/3 1/3

62 12 1/2 2/3 2/3 1/2 1/4 1/2 1/2 1/2

63 12 1/2 2/3 3/5 2/5 2/5 2/3 1/2 1/2

64 12 3/5 1/2 1/3 1/5 1/2 1/2 3/5 1/2

65 12 1/2 4/5 4/5 1/3 2/3 1/5 1/2 1/2

66 12 7/12 7/12 29/60 19/60 3/5 1/3 1/2 1/2

67 12 37/60 31/60 41/60 13/60 1/2 1/2 1/2 2/5

68 12 7/10 17/30 3/10 7/30 2/5 3/5 4/5 1/2

69 12 5/12 7/12 5/12 5/12 1/2 3/4 2/3 1/3

70 12 7/12 53/60 43/60 7/12 1/3 1/5 1/2 1/2

71 12 1/3 4/5 3/5 1/3 3/5 1/2 3/5 4/5

72 12 11/12 11/12 37/60 13/60 1/5 2/3 1/2 1/2

73 12 29/30 9/10 9/10 11/30 2/5 1/2 2/5 1/5

74 12 17/60 11/60 59/60 7/60 1/2 1/2 2/5 1/2

75 12 1/12 11/12 11/60 1/60 2/5 2/3 1/2 1/2

76 12 1 1 5/6 1/6 1/2 3/4 1/2 1/2

77 12 11/12 11/12 11/12 1/12 1/4 1/2 1/3 2/3
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Table 1 continued

� Length θ1 θ2 θ3 θ4 σ12 σ23 σ13 σ24

78 15 8/15 7/15 4/5 7/15 2/5 2/5 1/2 1/2

79 15 13/15 1 1 7/15 1/5 0 1/2 1/2

80 15 1/3 3/5 3/5 1/3 3/5 0 1/2 1/2

81 15 1/3 1/3 3/5 1/3 3/5 3/5 1/2 1/2

82 15 4/15 4/15 2/5 4/15 1/5 1/5 1/2 1/2

83 15 14/15 14/15 3/5 1/15 1/5 4/5 1/2 1/2

84 15 4/5 2/3 1/3 1/3 1/5 4/5 1/2 1/2

85 15 4/5 2/3 1/3 1/5 1/5 1 1/2 1/2

86 15 14/15 4/15 0 0 0 3/5 1/2 1/2

87 15 13/15 1/5 2/15 2/15 3/5 2/5 1/2 1/2

88 16 3/4 1/2 1/2 1/2 2/3 1/3 1/2 1/3

89 16 5/8 5/8 5/8 3/8 1/3 2/3 1/3 1/2

90 16 7/8 7/8 7/8 1/8 1/3 2/3 1/3 1/2

91 18 29/42 23/42 23/42 19/42 1/2 1/3 2/3 2/7

92 18 31/42 31/42 23/42 11/42 1/2 4/7 4/7 2/3

93 18 4/7 3/7 3/7 1/3 2/3 1/3 2/7 1/2

94 18 17/42 17/42 17/42 5/42 1/2 3/7 3/7 1/3

95 18 1/42 41/42 17/42 1/42 6/7 1/7 1/2 3/7

96 18 2/3 2/3 2/3 2/3 0 1/5 3/5 3/5

97 18 2/7 2/7 1/3 2/7 1/7 1/7 1/2 4/7

98 18 6/7 6/7 6/7 1/3 1/2 3/7 3/7 1/3

99 18 1 1/3 0 0 1/5 1 2/5 2/5

100 18 29/42 29/42 13/42 11/42 1/7 6/7 1/2 3/7

101 18 37/42 37/42 37/42 1/42 1/2 1/3 1/3 5/7

102 20 3/5 1/2 1/2 2/5 4/5 2/5 1/2 1/3

103 20 1/2 1/2 4/5 1/5 2/3 3/5 1/2 3/5

104 20 3/5 1/2 1/3 1/3 1/2 1/3 1/2 3/5

105 20 1/2 1/3 4/5 1/3 1/2 3/5 1/3 1/2

106 20 13/20 13/20 29/60 11/60 1/2 1/2 2/3 3/5

107 20 43/60 37/60 11/20 11/20 1/2 2/3 1/2 2/5

108 20 17/20 19/60 3/20 1/60 1/2 3/5 1/2 2/3

109 20 1 1 7/10 3/10 1/3 3/5 1/2 2/5

110 20 1/20 47/60 7/60 1/20 2/3 1/2 2/5 1/2

111 20 1 9/10 9/10 0 1/5 2/5 2/3 1/2

112 24 1/2 1/3 2/3 1/3 1/2 2/5 1/2 1/3

113 24 7/12 5/12 7/12 1/4 2/5 1/2 1/3 1/2

114 24 3/4 1/12 1/12 1/12 1/2 3/5 1/3 1/2

115 30 1/2 1/2 2/5 1/3 1/2 1/5 1/2 1/2
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Table 1 continued

� Length θ1 θ2 θ3 θ4 σ12 σ23 σ13 σ24

116 30 1/2 1/2 2/3 1/5 1/2 2/5 1/2 1/2

117 30 8/15 19/30 19/30 7/15 1/5 1/2 1/2 1/2

118 30 11/15 11/15 17/30 13/30 1/2 3/5 1/2 1/2

119 30 1/15 23/30 7/30 1/15 2/5 1/2 1/2 1/2

120 30 13/15 2/15 1/30 1/30 1/2 4/5 1/2 1/2

121 36 1/2 2/3 2/3 1/2 1/3 3/5 1/2 2/5

122 36 1 1 5/6 1/6 3/5 1/3 1/2 2/5

123 40 1/2 1/2 1/2 2/5 1/2 4/5 2/3 1/3

124 40 1/2 4/5 1/2 1/2 2/5 2/3 2/5 1/2

125 40 11/20 9/20 9/20 9/20 1/2 1/5 1/3 2/3

126 40 13/20 13/20 13/20 7/20 2/3 3/5 3/5 1/2

127 40 17/20 17/20 17/20 3/20 1/2 1/3 3/5 2/5

128 40 19/20 19/20 19/20 1/20 1/2 4/5 1/3 2/3

129 72 1/2 1/2 1/2 1/3 4/5 1/2 2/5 3/5

130 72 5/12 7/12 5/12 5/12 1/2 4/5 3/5 2/5

131 72 1/12 1/12 11/12 1/12 1/2 1/5 2/5 3/5

Having all elements of the orbit, we select a subset with the following condition:
for such k that Nk = 1 we require that Nk+1 = 2 (observe that the index k is defined
modulo n).

For the remaining tuples M(n)’s we allow only the following braid group actions:
any Bm,m+1 and Bm+1,m for m �= k − 1, k, k + 1; compositions Bk,k+1Bk−1,k ,
Bk+1,kBk+2,k+1,Bk,k+1Bk+1,k+2 andBk+1,kBk,k−1,where k is suchvalue that Nk = 1.

These allowed braid group actions preserve the condition from the previous para-
graph: Nk = 1 → Nk+1 = 2.

Next, we can do the reduction of elements of this set, joining thematricesMk , Mk+1
for which Nk = 1, Nk+1 = 2 into their product Mk · Mk+1.

To describe such reduction more simply we use the fact that the set is closed
under cyclical permutation (see 3), and define the reduction only for suchM(n)’s that
Nn−1 = 1, Nn = 2. The reduction operation will be notated as rk,k+1,

rk,k+1{...Mk, Mk+1, ...} → {...Mk · Mk+1, ...},
rn,1{M1, ...Mn} → {Mn · M1, ...},

so we have:

Bm,m+1 rn−1,nM(n) = rn−1,nBm,m+1M(n), m < n − 2,

Bm+1,m rn−1,nM(n) = rn−1,nBm+1,mM(n), m < n − 2,

Bn−2,n−1 rn−1,nM(n) = rn−2,n−1Bn−1,nBn−2,n−1M(n),

Bn−1,n−2 rn−2,n−1M(n) = rn−1,nBn−1,n−2Bn,n−1M(n),
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Bn−1,1 rn,1M(n) = rn−1,nBn,1Bn−1,nM(n),

B1,n−1 rn−1,nM(n) = rn,1Bn,n−1B1,nM(n),

and for each obtained M(n−1) add all its copies obtained by cyclical permutation.
Now we have a set of the tuples M(n−1)’s, finite and closed under all braid group

actions.
It is for sure either a finite orbit or a set of several finite orbits.
Lemma is proven. ��

Lemma 3 As a corollary of the previous lemma, everyMF
(n) can be constructed from

twoMF
(n−1)’s:

Proof We take any two tuplesMF
(n−1), which coincide with all matrices, except for

two neighboring ones. In one MF
(n−1), we call these two matrices A and B

A, B, M3 ... Mn−1

and in another tuple we call them C and C−1A B (so that the product of both matrices
is equal to the one in the first tuple)

C, C−1AB, M3 ... Mn−1.

We construct from them the tuple M(n):

C, C−1A, B, M3 ... Mn−1.

However, we are not yet sure that it belongs to a finite orbit; nevertheless every tuple
MF

(n) can be constructed in such way. ��

Using all pairs of MF
(n−1)’s we can get a list of the tuples M(n)’s which is a

complete list of the candidates for MF
(n)’s. Then we check which of them really

generate finite orbits. It gives us a hope to get the complete list ofMF
(n)’s by a finite

procedure.
For n = 1, 2, 3 the problem of classification of finite orbits is trivial: everyM(1),

M(2) or M(3) generates a finite orbit of length 1.
For n = 4 this problem was solved in our paper about Painleve-VI equation [3].
Therefore, using the list of finite orbits of M(4)’s, we can obtain the list of finite

orbits of M(5)’s, and then using the list of M(5)’s, obtain the corresponding list for
M(6)’s et cetera.

In this paper we developed the algorithm for exact and exhaustive search of M(n)

tuples. Our aim was to make this algorithm in such a way that it needs only simple
arithmetic and algebra. This allowed us designing a special computer program to
perform this search for n = 5, because it would be too many calculation for a human.
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5 Example of construction ofMF
(5) with direct using of matrices

Let us assume that in the list below the following fiveMF
(4)’s occur. Let us call them

A, B,C, D, E :

A : [A1, A2, A3, A4]

=
[(

1 0
0 1

)
,

(
1 1

−1 0

)
,

(
0 −i
−i 1

)
,

(
i i − 1
0 −i

)]
;

B : [B1, B2, B3, B4]

=
[(

1 1
−1 0

)
,

(
1 0
0 1

)
,

(
0 −i
−i 1

)
,

(
i i − 1
0 −i

)]
;

C : [C1, C2, C3, C4]

=
[(

1 1
−1 0

)
,

(
0 −1
1 1

)
,

(−i 1 − i
0 i

)
,

(
i i − 1
0 −i

)]
;

D : [D1, D2, D3, D4]

=
[(

1 1
−1 0

)
,

(
0 −1
1 1

)
,

(
1 1

−1 0

)
,

(
0 −1
1 1

)]
;

E : [E1, E2, E3, E4]

=
[(

0 −1
1 1

)
,

(
1 1

−1 0

)
,

(
0 −i
−i 1

)
,

(
1 i
i 0

)]
.

In fact, A and B belong to one orbit of the length 1 (orbit number 2 in the Table 1),
C belongs to an orbit of the length 6 (a symmetry of the orbit number 15), D belongs
to another orbit of the length 1 (orbit number 1, all matrices in the tuple D can be
diagonalized simultaneously), and E—to the orbit of length 3 (a symmetry of the orbit
number 5).

We will obtain M(5) from these tuples by the procedure given below.
Due to the construction principle exposed in the previous chapter, we notice that

A3 = B3 and A4 = B4, so the tuples A and B differ only by two first matrices.
Then we can perform induction of the tuple A into tuple F , meaning that A1 is

F1 · F2, renaming A2 to F3, A3 to F4 and A4 to F5:

[A1, A2, A3, A4] = [F1 · F2, F3, F4, F5].

But it doesn’t give us information about F1 and F2. To obtain it we can use information
from the tuple B:

[B1, B2, B3, B4] = [F1, F2 · F3, F4, F5].

In such a way we have found all the matrices F :

[(
1 1

−1 0

)
,

(
0 −1
1 1

)
,

(
1 1

−1 0

)
,

(
0 −i
−i 1

)
,

(
i i − 1
0 −i

)]
. (13)
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But we can also use C , D and E for the next inductions:

[C1, C2, C3, C4] = [F1, F2, F3 · F4, F5],
[D1, D2, D3, D4] = [F1, F2, F3, F4 · F5],
[E1, E2, E3, E4] = [F2, F3, F4, F5 · F1].

Therefore despite using the pair A and B we could use similarly any of the pairs B
and C , C and D, D and E or E and A.

Observe that for the signature formalismwhichwill be described in the next chapter,
we will need all the above written five 4-tuples of matrices.

The previous formulae still do not prove that F generates a finite orbit. But due to
the Lemma 3 we are sure that every MF

(5) can be constructed in a similar way.
For the F case we can check explicitly whether the generated orbit is finite or

infinite. It turns out to be a finite orbit of length 16 (orbit number 9 in the Table 9),
further it will be called a tetrahedral type orbit.

In order to obtain an exhaustive list of the tuplesMF
(5) we must repeat the proce-

dure described above for each five MF
(4) from the list of all possible MF

(4)’s.
Themethod of classification of finiteM(5) orbits, described in this example, cannot

be used in practice, because the set ofMF
(4) is infinite.

The set of MF
(4) can be described as a finite list using free parameters. Now we

will repeat the procedure of this example, using MF
(4)’s in a parametric form as a

source of our construction.
First, assume that written below tuple MF

(4) with three parameters occurs in the
list. We will call it A, and we will use it as the first stage of construction of F tuple:

A : [A1, A2, A3, A4]

= [F1 · F2, F3, F4, F5]

=
[(

1 0
0 1

)
,

(
2 cos(πx) 1

−1 0

)
,

(
0 − exp(iπ z)

exp(−iπ z) 2 cos(π y)

)
,

(
exp(iπ z) 2 exp(iπ z) cos(πx) − 2 cos(π y)

0 exp(−iπ z))

)]
.

Next, we find in the list another tuple, also three-parameteric:

[(
2 cos(πx) 1

−1 0

)
,

(
1 0
0 1

)
,

(
0 − exp(iπ z)

exp(−iπ z) 2 cos(π y)

)
,

(
exp(iπ z) 2 exp(iπ z) cos(πx) − 2 cos(π y)

0 exp(−iπ z))

)]
.

We are going to call it B, but wemust rename the parameters in it, to avoid collision
of our notations:
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B : [B1, B2, B3, B4]

=
[(

2 cos(πa) 1
−1 0

)
,

(
1 0
0 1

)
,

(
0 − exp(iπc)

exp(−iπc) 2 cos(πb)

)
,

(
exp(iπc) 2 exp(iπc) cos(πa) − 2 cos(πb)

0 exp(−iπc))

)]
.

Now we have to find the condition on the parameters that lead to the equalities
B3 = F4 and B4 = F5 up to common conjugation.

It gives us a discrete set of possibilities:

a = ± x, b = ± y, c = ± z,

and we will choose one of them:

a = −x, b = −y, c = −z.

Therefore the tuple B turns into the following expression:

B : [B1, B2, B3, B4]

=
[(

2 cos(πx) 1
−1 0

)
,

(
1 0
0 1

)
,

(
0 − exp(−iπ z)

exp(iπ z) 2 cos(π y)

)
,

(
exp(−iπ z) 2 exp(−iπ z) cos(πx) − 2 cos(π y)

0 exp(iπ z))

)]
.

Now in order to make B3 to coincide with F4 and B4 with F5 we will do a common
conjugation

Bν →
(
exp(iπ z) cos(πx) − cos(π y) i sin(π z)

−i sin(π z) exp(−iπ z) cos(πx) − cos(π y)

)
· Bν ·

(
exp(iπ z) cos(πx) − cos(π y) i sin(π z)

−i sin(π z) exp(−iπ z) cos(πx) − cos(π y)

)−1

,

and obtain the following expression:

B : [B1, B2, B3, B4]

=
[(

2 cos(πx) 1
−1 0

)
,

(
1 0
0 1

)
,

(
0 − exp(iπ z)

exp(−iπ z) 2 cos(π y)

)
,

(
exp(iπ z) 2 exp(iπ z) cos(πx) − 2 cos(π y)

0 exp(−iπ z))

)]
.

Finally, we can put F1 = B1 and F2 · F3 = B2, that is why F2 = B2 · F−1
3 , and we

obtain
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F : [F1, F2, F3, F4, F5]

=
[(

2 cos(πx) 1
−1 0

)
,

(
0 −1
1 2 cos(πx)

)
,

(
2 cos(πx) 1

−1 0

)
,

(
0 − exp(iπ z)

exp(−iπ z) 2 cos(π y)

)
,

(
exp(iπ z) 2 exp(iπ z) cos(πx) − 2 cos(π y)

0 exp(−iπ z))

)]
.

On the next step, we will get from the list one more tuple MF
(4) and call it C :

C : [C1, C2, C3, C4]

=
[(

1 1
−1 0

)
,

(
0 −1
1 1

)
,

(−i 1 − i
0 i

)
,

(
i i − 1
0 −i

)]
,

and will require the conditionsC1 = F1,C2 = F2,C3 = F3 ·F4,C4 = F5. To achieve
this we don’t need any common conjugation and must fix only all the parameters:

x = 1/3, y = 1/3, z = 1/2.

Therefore in this way we obtain:

F : [F1, F2, F3, F4, F5] =
=

[(
1 1

−1 0

)
,

(
0 −1
1 1

)
,

(
1 1

−1 0

)
,

(
0 −i
−i 1

)
,

(
i i − 1
0 −i

)]
.

Further on, we take one more 4-tuple and call it D:

D : [D1, D2, D3, D4]

=
[(

exp(iπ f ) 0
k exp(−iπ f )

)
,

(
exp(iπg) 0

l exp(−iπg)

)
,

(
exp(iπh) 0

m exp(−iπh)

)
,

(
exp(−i f − ig − ih) 0

n exp(i f + ig + ih)

)]
.

Now we have to provide the equalities D1 = F1, D2 = F2, D3 = F3.
From the equality Tr D1 = Tr F1 up to a common conjugationwe obtain f = 1/3.

Further, from the equalitis D1 · D2 = F1 · F2 = 1 and D2 · D3 = F2 · F3 = 1 we get
g = −1/3, h = 1/3, l = −k, m = k, n = −k. Therefore in this way we obtain

D : [D1, D2, D3, D4]

=
[(

1+i
√
3

2 0

k 1−i
√
3

2

)
,

(
1−i

√
3

2 0

−k 1+i
√
3

2

)
,

(
1+i

√
3

2 0

k 1−i
√
3

2

)
,

(
1−i

√
3

2 0

−k 1+i
√
3

2

)]
.
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Now in order to make D1 and F1 equal we perform a common conjugation:

Dν →
(
0 1

k − 1+i
√
3

2

)
· Dν ·

(
0 1

k − 1+i
√
3

2

)−1

and obtain

D : [D1, D2, D3, D4]

=
[(

1 1
−1 0

)
,

(
0 −1
1 1

)
,

(
1 1

−1 0

)
,

(
0 −1
1 1

)]
.

In such a way the conditions D1 = F1, D2 = F2, D3 = F3, D4 = F4 · F5 are
satisfied.

Finally we can find 4-tuple the written below call it E :

E : [E1, E2, E3, E4]

=
[(−U 2 −U −U−1

0 −U−2

)
,

(
U 1
0 U−1

)
,

(
0 U

−U−1 1

)
,

(−U−3 U 4 +U 2 + 1 +U−2

−U−4 U +U−1 +U−3

)]
,

where parameter U can also be defined as exp(iπu).
In order to satisfy the condition Tr E2 = Tr F2 we putU = exp(iπ/3) and obtain

E : [E1, E2, E3, E4]

=
[(

1−i
√
3

2 −1

0 1+i
√
3

2

)
,

(
1+i

√
3

2 1

0 1−i
√
3

2

)
,

(
0 1+i

√
3

2
−1+i

√
3

2 1

)
,

(
1 −1−i

√
3

2
1−i

√
3

2 0

)]
.

Now we do a common conjugation

Eν →
(
1 + i

√
3 −i + √

3
−2 (1 − i)(1 − √

3)

)
· Eν ·

(
1 + i

√
3 −i + √

3
−2 (1 − i)(1 − √

3)

)−1

and obtain the equality

E : [E1, E2, E3, E4]

=
[(

0 −1
1 1

)
,

(
1 1

−1 0

)
,

(
0 −i
−i 1

)
,

(
1 i
i 0

)]
.

Therefore E2 = F2, E3 = F3, E4 = F4 and E1 = F5 · F1.
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Table 2 4-signatures for constructing of a 5-signature

A B C D E

θ1 0 1/3 1/3 1/3 1/3

θ2 1/3 0 1/3 1/3 1/3

θ3 1/3 1/3 1/2 1/3 1/3

θ4 1/2 1/2 1/2 1/3 1/3

σ12 1/3 1/3 0 0 0

σ23 1/2 1/3 1/3 0 1/2

σ13 1/3 1/2 2/3 2/3 1/3

σ24 1/3 1/2 2/3 2/3 1/3

By a procedure described above the full list ofMF
(5) can be obtained with a finite

number of steps, but it needs too much work to be made manually, and also requires
rather complicated mathematics programming a computer.

In the next chapter we will describe how this work could be simplified using the
signature formalism.

6 Example of construction ofMF
(5) with signature formalism

In this chapter we repeat the result of the previous chapter using the signature formal-
ism.

To begin with, we perform it with explicit values only, without free parameters.
Assume that in the list of MF

(4)’s signatures the following five signatures, which
will be called A, B,C, D, E , occur: see Table 2.

Now we must perform an induction in each of these signatures, transforming the
4-signature A into 5-signature A′ and so on:

[A1, A2, A3, A4] → [A′
1 · A′

2, A′
3, A′

4, A′
5],

[B1, B2, B3, B4] → [B ′
1, B ′

2 · B ′
3, B ′

4, B ′
5],

[C1, C2, C3, C4] → [C ′
1, C ′

2, C ′
3 · C ′

4, C ′
5],

[D1, D2, D3, D4] → [D′
1, D′

2, D′
3, D′

4 · D′
5],

[E1, E2, E3, E4] → [E ′
2, E ′

3, E ′
4, E ′

5 · E ′
1].

Thereforewemust re-order the cells θ andσ in the newsignatures A′, B ′,C ′, D′, E ′,
which became particular signatures: see Table 3.

Now we must merge these five particular signatures. We will call the resulting
signature by F . The merging process is possible because in each row there are the
same values: see Table 4.

The reason for using five 4-signatures, not two of them, for constructing of 5-
signature, is that some cells like σ13 or σ135 can be obtained from only one of the
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Table 3 Particular signatures

A′ B′ C ′ D′ E ′

θ1 1/3 1/3 1/3

θ2 1/3 1/3 1/3

θ3 1/3 1/3 1/3

θ4 1/3 1/3 1/3

θ5 1/2 1/2 1/2

σ12 0 0 0

σ23 0 0 0

σ34 1/2 1/2 1/2

σ45 1/3 1/3 1/3

σ51 1/3 1/3 1/3

σ13 2/3

σ24 1/3

σ35 1/3

σ41 1/2

σ52 2/3

σ134 2/3

σ245 2/3

σ351 1/3

σ412 1/3

σ523 1/2

signatures A, B, C, D, E . Due to this if we do not use all five of the 4-signatures we
will not be able to construct the complete 5-signature.

Therefore we get the 5-signature F and, due to the Lemma 1, it can generate only
one tuple of matrices. However, the existence of this one tuple is not guaranteed by
the lemma. Neither it is guaranteed that this tuple generates a finite orbit.

Now we repeat the same procedure, starting from 4-signatures with parameters.
These signatures are taken from the Table 1, possibly transformed by the symmetry
group (3), (4), (5): A and B are taken from the orbit number 2 in the Table 1, C—from
the orbit 15, D—from the orbit 1, and E—from the orbit 5. Some of these signatures
are the members of orbits that are not represented in the Table 1 since the Table 1
represents only one member of each orbit. So we get the Table 5.

Nowwe perform an induction and obtain the following five particular 5-signatures:
see Table 6.

For providing of equivalence of the values in every rowmodulo 2 and up to sign, we
have a finite number of needed relations among the parameters which are also defined
modulo 2.

We choose the same set of relations as in the previous chapter:

a = −x, b = −y, c = −z, x = 1/3, y = 1/3, z = 1/2,
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Table 4 Merging of the particular signatures

A′ B′ C ′ D′ E ′ F

θ1 1/3 1/3 1/3 1/3

θ2 1/3 1/3 1/3 1/3

θ3 1/3 1/3 1/3 1/3

θ4 1/3 1/3 1/3 1/3

θ5 1/2 1/2 1/2 1/2

σ12 0 0 0 0

σ23 0 0 0 0

σ34 1/2 1/2 1/2 1/2

σ45 1/3 1/3 1/3 1/3

σ51 1/3 1/3 1/3 1/3

σ13 2/3 2/3

σ24 1/3 1/3

σ35 1/3 1/3

σ41 1/2 1/2

σ52 2/3 2/3

σ134 2/3 2/3

σ245 2/3 2/3

σ351 1/3 1/3

σ412 1/3 1/3

σ523 1/2 1/2

Table 5 4-signatures with parameters

A B C D E

θ1 0 a 1/3 f 2u + 1

θ2 x 0 1/3 g u

θ3 y b 1/2 h 1/3

θ4 z c 1/2 f + g + h u

σ12 x a 0 f + g 3u + 1

σ23 z b 1/3 g + h 1/2

σ13 y c 2/3 f + h 1/3

σ24 y c 2/3 f + h 1/3

f = h = 1/3, g = −1/3, u = 1/3.

Then we can perform a merging process of particular signatures and obtain the signa-
ture F : see Table 7.
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Table 6 Particular signatures with parameters

A′ B′ C ′ D′ E ′

θ1 a 1/3 f

θ2 1/3 g u

θ3 x h 1/3

θ4 y b u

θ5 z c 1/2

σ12 0 0 f + g

σ23 0 g + h 3u + 1

σ34 z 1/2 1/2

σ45 x a f + g + h

σ51 b 1/3 2u + 1

σ13 f + h

σ24 1/3

σ35 y

σ41 c

σ52 2/3

σ134 2/3

σ245 f + h

σ351 1/3

σ412 y

σ523 c

7 Constructing algorithm

In order to get the list of finite orbits of M(5)’s, we will need the following stages:
Stage 1. We take a list of signatures of MF

(4) (including the signatures which
correspond to triangular tuples).

We make this list to be finite using free parameters in some signatures. Further we
allow the next form of cells of signatures with parameters: each cell can be equal to
linear combination of several parameters, taken with integer coefficient, and the free
term is a rational number with a denominator 2520 and determined modulo 2. Each
parameter is also determined modulo 2.

Moreover, if there is a possibility of equivalent linear redefinition of the set of
parameters with another set such that Jacobian of transformation of parameters is
more than 1 by absolute value, then we do such the redefinition. E.g. if we have
θ1 = x + y, θ2 = x − y and θ3 = 2x , we replace it by θ1 = z, θ2 = w and θ3 = z+w.
The condition of non-existence of such redefinition will be called minimal Jacobian
condition.

Each tuple MF
(4) can be reproducted in 64 copies, using the symmetry transfor-

mations (3), (4) and (5).
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Table 7 Merging with parameters

A′ B′ C ′ D′ E ′ F

θ1 −1/3 1/3 1/3 1/3

θ2 1/3 −1/3 1/3 1/3

θ3 1/3 1/3 1/3 1/3

θ4 1/3 −1/3 1/3 1/3

θ5 1/2 −1/2 1/2 1/2

σ12 0 0 0 0

σ23 0 0 2 0

σ34 1/2 1/2 1/2 1/2

σ45 1/3 −1/3 1/3 1/3

σ51 −1/3 1/3 5/3 1/3

σ13 2/3 2/3

σ24 1/3 1/3

σ35 1/3 1/3

σ41 −1/2 1/2

σ52 2/3 2/3

σ134 2/3 2/3

σ245 2/3 2/3

σ351 1/3 1/3

σ412 1/3 1/3

σ523 −1/2 1/2

Stage 2.Wemake all possible 5-signatures, combining the 4-signatures in different
ways, as in the example from the previous chapter. The set of such 5-signatures will
be called SC

5 .
Let us construct the signature, which we call S, meaning that it is the signature of

aM(5), which consists of M1, M2, M3, M4, M5 monodromy matrices.
First, we take any MF

(4), defining it as M1M2, M3, M4, M5. Knowing the sig-
nature of the tuple MF

(4), we will have a particular signature of M(5)’s, containing
eight numbers: θ3, θ4, θ5, σ12, σ34, σ45, σ35 and σ124.

Let us take anotherMF
(4), defining it as M1, M2M3, M4, M5, and renaming the

eight numbers of its signature into eight numbers of particular signature of M5: θ1,
θ4, θ5, σ23, σ45, σ15, σ14 and σ235. Merging these two particular signatures of the same
M5 into one particular signature, we demand the coincidence of two values of θ4, two
of θ5 and two values of σ45. As a result we obtain a particular signature ofM(5) with
13 defined cells.

If the particular signatures that are merging contain parameters, we must do the
following procedure:

For each cell defined in both particular signatures and if at least in one of these cells
contains parameters, we must consider two possibilities: 1) the values in these cells
coincide exactly modulo 2, 2) the values coincide with a change of sign, also modulo
2. In total, we have two in the power number of such the cells possibilities.
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For each of these possibilities we have a system of linear equations. To each cell
corresponds one equation, and it is an equation defined modulo 2, in which variables
are also defined modulo 2, all coefficients are integers, and the free term is a multiple
of 1/2520.

We solve this system by iterations:

Solving of the system
Step 0. On each step, we find the smallest in absolute value non-zero coefficient in

the system. Let us call this coefficient kEV . The equation in which it appears will be
called E , and the variable by which it appears—V .

Step 1. If kEV = ±1, we use the equation E to determine V via another variables.
Then we come back to Step 0, but with smaller number of variables. Otherwise we go
to Step 2.

Step 2. If all the coefficients are zero, then the process of solving of the system is
almost finished. We check the free terms. If at least one free term is nonzero modulo
2, then this case produces no solutions. If all equations are satisfied, then the system
is solved and the task is performed.

Step 3. If |kEV | ≥ 2, we look for the coefficient by the variable V in other equations,
which is bigger or equal to kEV by absolute value. If it exists, we add to each such
equation the equation E with such a factor that coefficient by V becomes less than
kEV in absolute value. Then we come back to Step 0, having either smaller minimal
coefficient or smaller number of nonzero coefficients. Otherwise we go to Step 4.

Step 4. We check if there is a coefficient in E which is bigger or equal to kEV by
absolute value. If it exists, we redefine the variable V by adding to it other variables
with such factors that there remains no coefficient bigger or equal than kEV in the
equation E . Then we come back to Step 0, having either smaller minimal coefficient
or smaller number of nonzero coefficients. Otherwise we go to Step 5.

Step 5. Here we have |kEV | ≥ 2, all other coefficients by V are zero, and all
other coefficients in the equation E are zero too. We control that |kEV | is a divisor of
5040 and the free term of E is a multiple of |kEV |/2520. If one of these conditions is
violated, we treat this as amistake of the algorithm. In fact, it never happens. Therefore
we choose an integer value m from the interval [0, |kEV | − 1] (yet another branching
of possibilities), divide the equation E by kEV and add to its free term 2m/kEV .
We have to do this because the equation is defined modulo 2. And we come back to
Step 0. ��

Solving the system, we perform the operations with variables (see Steps 1, 4, 5)
simultaneously with parameters in signatures. When the system is solved, we get
new particular signatures with new parameters (number of parameters can increase,
decrease or even vanish).

In order to provide the minimal Jacobian condition, we transform the parameters
in obtained particular signature with Gauss-like transformation.

Note that this procedure can give several results in case of particular signatures
with parameters.

Next, we repeat this procedure thrice, merging the particular signature with partic-
ular signatures obtained by induction ofMF

(4)’s, defined as {M1, M2, M3 ·M4, M5},
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{M1, M2, M3, M4 · M5} and {M2, M3, M4, M5 · M1}, in order to fill in all cells and
obtain the complete signature S5, which is considered to be a signature ofM(5).

Using this procedurewith all 4-signatures from the Table 1 (which are the signatures
of all MF

(4)’s), we get a list of S5’s which we call SC
5. We know that the signature

of every MF
(5) belongs to this list.

Naively, we would check each signature SC
5 for consistency. The inconsistent ones

we remove from the list. And for each consistent signature we reconstruct M(5) as a
tuple of matrices and check whether it generates a finite orbit.

But here there is a problem: the check of the consistency with the help of the com-
puter program can not be done exactly and, moreover, for the tuple M5’s containing
free parameters this task is impossible to perform with the help of computer algebra.

That is why we will proceed in another way.

Stage 3. The straightforward way to proceed would be the following sequence of
steps:

Each signature from the list SC
5 we should check for consistency, and—if it is

consistent—to reconstruct it intoM(5). Then, using theseM(5)’s we should form the
list and call itMC

5. Then on each elementM ofMC
5 we should act by ten braid group

actions [see (1) and (2)] and check whether all the results of these actions also belong
toMC

5. If they do not, than we would be sure that M generates an infinite orbit, and
exclude it from the list MC

5. Then we should repeat this check until there remains
nothing to exclude. After this, we would be sure thatMC

5 contains only finite orbits,
or possibly infinite orbits written by finite number of elements with parameters, so that
during continuationof the orbit the parameters transformunder an infinite group action.

But our wish is to avoid this complicated procedure of checking the consistency
and reconstruction of tuples of matrices.

That’s why we will use another approach. Starting from the list SC
5, we will treat

it, directly considering the signatures and removing unwanted elements from this list,
and the rest elements uniting into the orbits.

It is possible to determine the braid group actions onto the signature, and the result
will be an incomplete signature.

Due to the definition of the incomplete signature, there are ten types of incomplete
signatures, each containing sixteen cells: all five θ ’s, the σ12, σ23, σ34, σ45, σ15 and six
more σ ’s. Each type of the incomplete signatures is obtained from complete signatures
by a specific braid group action. In more details, if we act on any signature by braid
group action Ba,b, then we get an incomplete signature, in which σ ’s containing index
a and not containing b will be undefined.

If we have M(5) which will be denoted M , and S = {θ1...} is the signature of M ,
then the signature S′ = {θ ′

1...} of the result of braid group action Bk,k+1M will be

θ ′
m = θm, m �= k, k + 1;
θ ′
k = θk+1, θ ′

k+1 = θk;
σ ′
a,b... = σa,b..., k, k + 1 /∈ {a, b...};

σ ′
...k,k+1... = σ...k,k+1...;

σ ′
...k... = ?;
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σ ′
...k+1... = σ...k....

The symbol ? means that there is no simple way to calculate this cell, and we leave
it undetermined.

Similarly, the signature S′′ = {θ ′′
1 ...} of Bk+1,kM will be

θ ′′
m = θm, m �= k, k + 1;

θ ′′
k = θk+1, θ ′′

k+1 = θk;
σ ′′
a,b... = σa,b..., k, k + 1 /∈ {a, b...};

σ ′′
...k,k+1... = σ...k,k+1...;

σ ′′
...k... = σ...k+1...;

σ ′′
...k+1... = ?.

We remind that all indices here are modulo n.
Therefore our plan is the following:

1. We take any signature from SC
5 and call it S.

2. We act on S by all 2 · n = 10 braid group actions.
3. The result of each braid group action on S is an incomplete signature which we

call S′.
4. If S does not contain independent parameters—we look in SC

5 for any signature
which can be merged with S′. If there is no such the signature, we exclude the S
from SC

5.
5. If S contains independent parameters, and so does S′—we look (in SC

5) for any
signature which can bemerged with S′ without imposing conditions on parameters
in S′.

6. If S contains independent parameters, and the step 5 fails, we look in SC
5 for

any signature, let us call it S∗, which can be merged with S′ after the imposing
conditions on parameters in S′. For each such S∗ (it can be one, more than one or
none) we make a copy of S after imposing the same conditions on its parameters
and add it to SC

5. After this we exclude S from SC
5.

7. We repeat this procedure for allmembers ofSC
5 until it remains nothing to exclude.

�
Note that some signatures can be inconsistent, but since the braid group actions

are natural only for consistent signatures—the inconsistent signatures are likely to be
excluded by this procedure. However, some inconsistent signatures can remain in the
list.

Note that we could write down the same procedure only for signatures without
parameters, avoiding the steps 5 and 6, but it would be an infinite procedure with
infinite list of signatures. Due to the steps 5 and 6 we obtain the same result by a finite
sequence of steps.

To illustrate these procedure,weprovide three examples [all gathered in theTable 8].



Finite orbits of monodromies of rank two Fuchsian systems Page 31 of 42 122

Table 8 Braiding of 5-signatures

A A′ A∗ B B′ C C ′ C∗ C ′ ∧ C∗ C×

θ1 1/3 1/3 1/3 1/2 1/2 y y b 0 0

θ2 1/3 1/3 1/3 1/2 1/2 z 1/2 c 1/2 1/2

θ3 1/3 1/3 1/3 1/2 1/2 1/2 z 1/2 1/2 1/2

θ4 1/3 1/3 1/3 1/2 1/2 x x a 0 0

θ5 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

σ12 0 2/3 2/3 1/3 3/5 y + z 1/2 b + c 1/2 1/2

σ23 0 0 0 1/5 1/5 1/2 1/2 1/2 1/2 1/2

σ34 1/2 1/3 1/3 1/5 4/5 1/2 x − z 1/2 1/2 1/2

σ45 1/3 1/3 1/3 1/3 1/3 1/2 1/2 1/2 1/2 1/2

σ51 1/3 1/3 1/3 2/5 2/5 1/2 1/2 1/2 1/2 1/2

σ13 2/3 0 3/5 1/2 1/2 1/2 1/2

σ24 1/3 1/2 1/2 2/3 1/5 x + z 1/2 a + c 1/2 1/2

σ35 1/3 2/3 3/5 x + y + z a + b + c 1/2 1/2

σ41 1/2 1/2 1/2 1/2 1/2 x + y x + y a + b 0 0

σ52 2/3 1/3 1/3 1/2 3/5 1/2 x + y + z 1/2 1/2 1/2

σ134 2/3 1/3 3/5 1/2 1/2 1/2 1/2

σ245 2/3 0 0 2/3 1/3 1/2 y + z 1/2 1/2 1/2

σ351 1/3 1/2 4/5 x − z a − c 1/2 1/2

σ412 1/3 2/3 2/3 2/3 3/5 x − y − z 1/2 a − b − c 1/2 1/2

σ523 1/2 1/2 1/2 3/5 3/5 x − y x − y a − b 0 0

First example is a 5-signature A without parameters, which is the signature of
MF

(5) from (13). We perform the braid group action B3,2 getting an incomplete
signature A′ and find in SC

5 the signature A∗ which can be merged with A′, so the
Step 4 succeeds.

Second example is the signature B such that B ′ = B3,2B can not be merged with
any signature in SC

5.
In the third example we start from the signature C with parameters. For it, we get

an incomplete signature C ′ = B3,2C . In order to merge C ′ with any member of SC
5,

which will be called C∗, we take an element of SC
5, same as C , of course with other

notations for its parameters: a, b, c replacing x , y, z. Further, during merging of C ′
and C∗ we require some conditions on the parameters, and one of the possibilities for
such conditions is a = b = x = y = 0, c = z = 1/2. The result of merging is called
C ′ ∧ C∗ and the copy of C which is added to SC

5 after excluding C is called C×.
Stage 4. After all exclusions, the list SC

5 will be renamed as SF
5.

Therefore SF
5 is the list of signatures, closed under the braid group actions. That

is why SF
5 is split under braid group actions into a number of pieces. But these pieces

still are not the orbits.
Naively, we would do two steps to finally construct the orbits:
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1. First, we must check consistency of all these signatures. If one signature is incon-
sistent, then all signatures from the piece, associated with it by braid group actions,
are inconsistent too. After excluding inconsistent signatures, only the consistent
ones remain.
Now we can transform this list of signatures into list of tuples M(5)’s.

2. For each tupleM(5) from this list we have to construct an orbit to make sure that
it is a finite orbit. IfM(5) contains no parameters, the orbit must be finite because
the number of M(5)’s without parameters in the list is finite. As for any M(5)

with parameters, if the procedure of construction of the orbit does not terminate
for too many steps, we will try to write this orbit with a finite set of elements and
introduce a group of transformation of the parameters.
In fact, we are sure that every tuple M(5) with one parameter generates a finite
orbit, because the order of the group of transformations of one parameter cannot be
bigger than 10080: transformations of the parameters must be linear, with integer
coefficient, invertible, that’s why the coefficient can be ± 1 only, and the free term
must be a multiple of 1/2520 and defined by modulo 2.
Therefore, the decision about "construction of the orbit does not terminate for too
many steps" we must do only for the orbits with two or more parameters.

In order to simplify calculations, we perform another procedure with the list SF
5 to

obtain the same result:
We construct several classes of the tuplesMF

(5)’s, which can be described simply
as follows:

1. All MF
(4)’s plus the unit matrix.

2-6. All matrices in a MF
(5) belong to a finite subgroup of SU (2) group. There

are five such subgroups:
2. Cyclical group. All the matrices are diagonal.
3. Dihedral group. Every matrix is either diagonal or its diagonal elements are zeros.
4. Tetrahedral group.
5. Octahedral group.
6. Icosahedral group.

For all these tuples MF
(5) we make 5-signatures and find the same signatures in list

SF
5. For the types 1, 4, 5, 6 we can do it straightforwardly. As for types 2, 3 there exists

an infinite number of cyclical and dihedral groups, but belonging of the signature to
one of these groups can be checked by simple calculations.

All this can be done using a specially designed computer program.
The members of the list SF

5 which are not of the types 1, 2, 3, 4, 5, 6, we will
consider manually.

8 Computer realization

At this stage, the classification is formulated in such a way that it can be carried out
with a specially designed program.

The computer program for the algorithm from the previous chapter was written in
the C++ language and ran on a personal computer for about 12 h.
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To have confidence in accuracy of the calculations, we restricted the use of floating
point numbers: double and complex variables are used only for constructing the list of
4-signatures and for constructing of tetrahedral, octahedral and icosahedral groups (for
which the correct results are well known), for approximate checking of consistency of
signatures without parameters (which result is only informative and does not influence
further calculations) and also for the visualization of the progress bar.

In the program there is a variable called "errorcode". Normally it is zero, but in
every abnormal situation it is assigned the code of the situation, and can never become
zero again. The fact that this variable remains zero till the program finishes makes us
believe that the program works correctly.

The values of the coefficients of the parameters in signature cells never exceed 4,
so we are not afraid of arithmetical overflow.

Free terms in the cells are standard fractions with denominator 2520 and numerator
an integer value which does not exceed 2520 by absolute value.

The source code for this program is available by request.

9 The result of computer calculations

The result of computer calculations is the list SF
5 which consists of 231 orbits of

signatures (we call an orbit of signatures the subset of SF
5 connected with braid

group actions).
From these 231, 128 were recognized as constructed fromM(4) by addition of unit

matrix.
And from the remaining 103, 3, 19 and 71 were recognized respectively as tetra-

hedral, octahedral and icosahedral type (in Table 9, see Sect. 10, they are numbered
respectively as 9–11, 12–30 and 31–101).

There remain ten orbits of signatures: one with four parameters, two with three
parameters, two with one parameter and five without parameters.

They are presented in the Table 10, where each orbit is represented by one signature.
The orbit with number 0with four parameters cooresponds to the triangularM(5)’s,

thus it is outside the scope this paper and will be not considered below. For this type of
orbits we can say also that it includes the case when all matrices belong to a cyclical
subgroup of SU (2) (i.e. when all matrices are diagonal), but it also includes other
subtypes: when all matrices cannot be diagonalized simultaneously, but are lower
triangular and some of them have nonzero [2, 1] element. Nevertheless, the signatures
of M(n)’s of orbits belonging to these other subtypes are the same as signatures of
M(n) where all matrices belong to a cyclical group.

The tuple M(5) for the orbit 0 is constructed in (14):

M1 =
(

X 0
Vx X−1

)
, M2 =

(
Y 0
Vy Y−1

)
, M3 =

(
Z 0
Vz Z−1

)
,

M4 =
(
W 0
Vw W−1

)
, M5 =

(
(X Y Z W )−1 0

V5 X Y Z W

)
(14)
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Table 9 List of 5-signatures which generate finite orbits

� Length θ1 θ2 θ3 θ4 θ5 σ12 σ23 σ34 σ45 σ51 σ13 σ24

1 4 1/2 x y z 1/2 1/2 x + y y + z 1/2 x+
y+
z

1/2 x + z

2 1/2 1/2 x 1/2 1/2 x +
y

1/2 1/2 y z 1/2 x + z

3 9 x x x x 2/3 2x 2x 1/3 3x 1/2 2x 1/3

4 12 x x 2x+
1

x x 1/3 1/2 1/2 1/3 2x 3x+
1

2x

5 105 2/7 2/7 2/7 2/7 2/7 1/3 1/7 1/7 1/7 1/3 1/3 1/2

6 105 4/7 4/7 4/7 4/7 4/7 1/3 5/7 5/7 5/7 1/3 1/3 1/2

7 105 6/7 6/7 6/7 6/7 6/7 1/3 3/7 3/7 3/7 1/3 1/3 1/2

8 192 1 1 1 1 1 1/3 1/3 1/3 1/3 1/3 1/5 1/5

9 16 1/3 1/3 1/3 1/3 1/2 0 0 1/2 1/3 1/3 2/3 1/3

10 24 1/3 1/3 1/3 1/2 1/2 1/3 1/3 1/3 0 1/3 1/3 1/3

11 36 1/3 1/3 1/2 1/2 1/2 0 1/3 1/2 1/2 1/3 2/3 1/3

12 18 1/4 1/4 1/3 1/2 1/2 1/3 1/4 1/3 0 1/4 1/4 1/2

13 24 1/4 1/4 1/4 1/2 1/2 0 1/3 1/2 1/4 1/4 1/3 1/3

14 24 1/4 1/4 1/3 1/3 1/2 0 1/4 1/2 1/3 1/4 1/2 1/4

15 24 1/4 1/4 1/3 1/3 2/3 0 1/4 2/3 1/3 1/2 1/2 1/4

16 27 1/4 1/4 1/4 1/4 1/3 0 0 1/3 1/4 1/4 1/2 1/3

17 36 1/4 1/3 1/2 1/2 1/2 1/4 1/4 1/4 1/2 1/2 2/3 2/3

18 36 1/4 1/4 1/4 1/3 1/2 0 0 1/2 1/4 1/3 1/2 1/4

19 40 1/4 1/4 1/3 1/3 1/3 0 1/4 1/3 1/3 1/4 1/2 1/4

20 48 1/4 1/4 1/2 1/2 1/2 0 1/3 1/2 1/2 1/3 2/3 1/2

21 48 1/4 1/3 1/3 1/2 1/2 1/4 0 1/4 1/4 1/2 1/2 3/4

22 64 1/4 1/3 1/3 1/3 1/2 1/4 0 1/3 1/4 1/3 1/2 1/2

23 72 1/3 1/2 1/2 1/2 1/2 1/4 1/4 1/4 1/2 2/3 2/3 2/3

24 72 1/4 1/4 1/3 1/2 1/2 0 1/4 1/2 1/3 1/3 1/2 1/3

25 96 1/4 1/2 1/2 1/2 1/2 1/4 1/4 1/3 1/3 2/3 2/3 1/2

26 96 1/3 1/3 1/2 1/2 1/2 0 1/4 1/2 1/2 1/3 3/4 1/2

27 120 1/3 1/3 1/3 1/2 1/2 0 1/3 1/2 1/3 1/4 1/2 1/4

28 144 1/4 1/3 1/2 1/2 1/2 1/4 1/4 1/3 1/3 1/3 1/2 1/2

29 192 1/2 1/2 1/2 1/2 1/2 0 1/4 1/2 1/2 1/3 3/4 1/3

30 216 1/3 1/2 1/2 1/2 1/2 1/4 0 1/3 1/3 1/2 3/4 2/3

31 30 1/5 1/5 2/5 2/5 2/5 1/5 1/5 1/3 1/3 1/3 1/2 1/2

32 30 1/5 1/5 1/5 2/5 3/5 0 1/5 3/5 1/5 1/2 1/3 1/3

33 36 1/5 1/3 2/5 2/5 3/5 1/5 1/5 4/5 1/5 1/2 1/2 1/5
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Table 9 continued

� Length θ1 θ2 θ3 θ4 θ5 σ12 σ23 σ34 σ45 σ51 σ13 σ24

34 36 1/5 1/5 1/5 1/3 3/5 1/5 1/5 2/5 1/3 1/2 1/3 2/5

35 40 1/5 1/5 2/5 2/5 3/5 0 1/5 3/5 2/5 1/2 3/5 1/3

36 40 1/5 1/5 1/5 2/5 2/5 1/5 1/5 1/5 0 1/3 1/5 1/2

37 45 1/5 2/5 2/5 2/5 3/5 1/3 0 3/5 1/5 2/5 1/2 1/3

38 45 1/3 1/3 2/5 2/5 2/5 1/5 1/5 1/3 1/3 1/5 1/2 1/2

39 45 1/5 1/5 1/3 2/5 3/5 1/5 1/5 2/5 2/5 1/2 1/2 1/2

40 45 1/5 1/5 1/5 1/5 2/5 0 1/5 2/5 1/5 1/3 1/3 1/5

41 45 1/5 1/5 1/5 1/3 2/3 1/5 1/5 1/2 1/3 1/2 1/3 1/3

42 64 2/5 2/5 2/5 2/5 1/2 1/3 1/3 1/3 1/5 1/5 1/3 1/3

43 64 1/5 1/5 1/5 1/5 1/2 1/5 1/5 1/3 1/3 1/3 1/3 1/5

44 72 1/5 1/5 1/3 2/5 2/5 0 1/5 2/5 1/3 1/3 1/2 1/3

45 80 1/5 1/5 2/5 2/5 1/2 1/5 1/5 1/3 1/3 1/3 1/2 1/2

46 81 1/5 1/3 2/5 2/5 2/5 1/5 1/5 1/3 1/3 1/3 1/2 2/5

47 81 1/5 1/5 1/5 1/3 2/5 0 0 2/5 1/5 1/3 2/5 1/3

48 84 1/5 1/3 1/3 2/5 2/5 1/5 1/5 1/5 1/3 1/2 1/2 2/3

49 84 1/5 1/5 1/3 1/3 3/5 0 1/5 3/5 1/3 2/5 1/2 1/5

50 96 1/5 2/5 2/5 2/5 1/2 1/5 0 3/5 1/5 2/5 3/5 1/3

51 96 1/5 1/5 1/5 2/5 1/2 0 0 1/2 1/5 2/5 2/5 1/3

52 96 2/5 2/5 2/5 2/5 3/5 0 0 3/5 2/5 2/5 4/5 1/3

53 96 1/5 1/5 1/5 1/5 1/5 0 0 1/5 1/5 1/5 2/5 1/3

54 105 1/3 1/3 1/3 2/5 3/5 1/5 1/5 2/5 2/5 1/2 1/2 2/5

55 105 1/5 1/3 1/3 2/5 3/5 1/5 0 2/3 1/5 2/5 1/2 1/5

56 105 1/5 1/5 1/3 1/3 2/5 1/5 1/5 1/5 2/5 1/3 1/2 1/2

57 105 1/5 1/5 1/3 1/3 2/3 0 1/5 2/3 1/3 1/2 1/2 1/5

58 108 1/3 2/5 2/5 2/5 2/5 1/5 0 1/3 1/3 2/5 2/3 3/5

59 108 1/5 1/5 1/5 1/5 1/3 0 0 1/3 1/5 1/5 2/5 1/5

60 120 1/5 1/3 1/3 1/3 3/5 1/5 1/5 1/2 1/3 1/2 1/2 1/3

61 144 1/3 2/5 2/5 2/5 1/2 1/5 0 1/3 1/3 2/5 2/3 3/5

62 144 1/5 1/3 2/5 2/5 1/2 1/5 1/5 1/3 1/3 1/2 1/2 1/2

63 144 1/5 1/5 1/3 2/5 1/2 0 1/5 1/2 1/3 1/3 1/2 1/3

64 144 1/5 1/5 1/5 1/3 1/2 0 0 1/2 1/5 1/3 2/5 1/5

65 144 1/3 1/3 2/5 2/5 3/5 0 1/5 3/5 2/5 1/3 2/3 1/5

66 144 1/5 1/5 1/5 1/3 1/3 0 0 1/3 1/5 1/3 2/5 2/5

67 200 1/5 2/5 2/5 1/2 1/2 1/5 1/3 1/3 1/3 2/3 1/2 1/2

68 200 1/5 1/5 2/5 1/2 1/2 0 1/3 1/2 2/5 1/3 1/2 2/5

69 205 1/5 1/3 1/3 1/3 2/5 1/5 0 1/3 1/5 1/3 1/2 1/2

70 220 1/3 1/3 1/3 2/5 2/5 0 0 2/5 1/3 2/5 2/3 1/2

71 220 1/5 1/5 1/3 1/3 1/3 0 1/5 1/3 1/3 1/5 1/2 1/3

72 225 1/3 1/3 1/3 1/3 2/5 1/5 1/5 1/5 2/5 2/5 1/2 1/2

73 225 1/5 1/3 1/3 1/3 2/3 1/5 1/5 3/5 1/3 1/2 1/2 1/3
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Table 9 continued

� Length θ1 θ2 θ3 θ4 θ5 σ12 σ23 σ34 σ45 σ51 σ13 σ24

74 240 2/5 2/5 2/5 1/2 1/2 0 1/3 1/2 2/5 1/5 3/5 1/3

75 240 1/5 1/5 1/5 1/2 1/2 0 1/5 1/2 1/5 1/3 1/3 1/3

76 240 1/3 1/3 2/5 2/5 1/2 1/5 1/5 1/3 1/3 1/3 1/2 2/5

77 240 1/5 1/3 1/3 2/5 1/2 1/5 0 2/5 1/5 2/5 1/2 1/2

78 240 1/5 1/5 1/3 1/3 1/2 0 1/5 1/2 1/3 1/3 1/2 1/5

79 252 1/3 1/3 1/3 1/3 2/3 0 1/5 2/3 1/3 2/5 3/5 1/5

80 300 1/3 1/3 1/3 1/3 3/5 0 0 3/5 1/3 1/3 2/3 1/5

81 300 1/5 1/3 1/3 1/3 1/3 1/5 0 1/5 1/5 1/3 1/2 3/5

82 360 1/3 2/5 2/5 1/2 1/2 1/5 0 1/3 1/3 1/2 2/3 2/3

83 360 1/5 1/3 2/5 1/2 1/2 1/5 1/5 1/3 1/3 1/2 1/2 1/2

84 360 1/5 1/5 1/3 1/2 1/2 0 1/5 1/2 1/3 2/5 1/2 2/5

85 400 1/3 1/3 1/3 2/5 1/2 0 0 1/2 1/3 2/5 2/3 2/5

86 400 1/5 1/3 1/3 1/3 1/2 1/5 0 1/2 1/5 1/3 1/2 1/3

87 432 1/3 1/3 1/3 1/3 1/3 0 1/5 1/3 1/3 1/5 3/5 1/3

88 480 2/5 2/5 1/2 1/2 1/2 0 1/5 1/2 1/2 1/3 4/5 1/2

89 480 1/5 1/5 1/2 1/2 1/2 0 1/3 1/2 1/2 2/5 2/3 1/2

90 576 1/3 1/3 1/3 1/3 1/2 0 1/5 1/2 1/3 1/5 3/5 1/5

91 580 1/5 2/5 1/2 1/2 1/2 1/5 1/5 2/5 1/3 3/5 2/3 1/2

92 600 1/3 1/3 2/5 1/2 1/2 0 1/5 1/2 2/5 1/3 2/3 2/5

93 600 1/5 1/3 1/3 1/2 1/2 1/5 0 1/3 1/5 1/2 1/2 2/3

94 900 1/3 2/5 1/2 1/2 1/2 1/5 1/5 1/3 2/5 2/5 3/5 1/2

95 900 1/5 1/3 1/2 1/2 1/2 1/5 1/5 1/3 2/5 1/2 2/3 3/5

96 936 1/3 1/3 1/3 1/2 1/2 0 1/5 1/2 1/3 1/3 3/5 1/3

97 1200 2/5 1/2 1/2 1/2 1/2 1/5 0 1/3 2/5 1/2 4/5 2/3

98 1200 1/5 1/2 1/2 1/2 1/2 1/3 0 1/3 1/5 1/2 2/3 2/3

99 1440 1/3 1/3 1/2 1/2 1/2 0 1/5 1/2 1/2 2/5 4/5 1/2

100 2160 1/3 1/2 1/2 1/2 1/2 1/5 0 2/5 1/3 1/2 4/5 3/5

101 3072 1/2 1/2 1/2 1/2 1/2 0 1/5 1/2 1/2 1/3 4/5 2/5

with different constraints on the parameters X , Y , Z , W and the off-diagonal ele-
ments Vx , Vy , Vz , Vw, V5.

For orbits 1− 8 in the list the tuples of matrices were constructed explicitly, using
notations X = exp(iπ x), Y = exp(iπ y), Z = exp(iπ z).

Orbit 1:

M1 =
(

0 1
−1 0

)
, M2 =

(
X 0
0 X−1

)
, M3 =

(
Y 0
0 Y−1

)
,

M4 =
(
Z 0
0 Z−1

)
, M5 =

(
0 −(X Y Z)−1

X Y Z 0

)
. (15)
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The length of this orbit is 4.
Orbit 2:

M1 =
(

0 1
−1 0

)
, M2 =

(
0 −X Y

(X Y )−1 0

)
, M3 =

(
X 0
0 X−1

)
,

M4 =
(

0 Y Z−1

−Y−1Z 0

)
, M5 =

(
0 −Z−1

Z 0

)
, (16)

where x, y, z must be rational numbers. The length of this orbit is

u2 v2
∏

p≥3(1 − p−2)

1 + δu,1(1 − δv,1)
,

where u is the denominator of x , v is the smallest common denominator of values
(u y) and (u z), and p is an odd prime divisor of v; the denominator of this equation
is 2 for u = 1 and v ≥ 2, and 1 otherwise.

In orbits 1 and 2 all matrices belong to the dihedral group.
Orbit 3:

M1 =
(
X 0
1 X−1

)
, M2 =

(
X 0
1 X−1

)
, M3 =

(
X 0
1 X−1

)
,

M4 =
(
X−1 −1
0 X

)
, M5 =

(−1 − X2 X3

−X − X−1 − X−3 X2

)
. (17)

Orbit 4:

M1 =
(
X 0
−1 X−1

)
, M2 =

(
X−1 1
0 X

)
, M3 =

(−X2 0
X + X−1 −X−2

)
,

M4 =
(
X−1 1
0 X

)
, M5 =

(
X 0
−1 X−1

)
. (18)

Orbits 5, 6, 7 can be written in the same form:

M1 =
(
s 0
0 s6

)
,

M2 =
(
s6(s − 1)5(1 + s)3(1 + s2)2/7 s5(1 + s2)/7
s(s − 1)4(1 + s)3 s3(1 − s)5(1 + s)3(1 + s2)2/7

)
,

M3 = M2
1 M2 M

−2
1 , M4 = M−3

1 M2 M
3
1 , M5 = M−1

1 M2 M1, (19)

where s is one of the three seventh roots of unity: s = exp(2 iπ/7), s = exp(4 iπ/7)
or s = exp(6 iπ/7). Replacing s → s−1 yields the same matrices up to a common
conjugation.
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Orbit 8:

M1 =
(−1 1
0 −1

)
, M2 =

(−1 0
−1 −1

)
, M3 =

( −1−√
5

2 1
−3+√

5
2

−3+√
5

2

)
,

M4 =
(

1−√
5

2
3−√

5
2

−3+√
5

2
−5+√

5
2

)
, M5 =

( −1−√
5

2
3−√

5
2

−1 −3+√
5

2

)
. (20)

The orbit in SF
5, which is called A in the list, consists of one element, turns out

to be inconsistent: all θ ’s are equal to 0 and all σ ’s are equal to 1. It is easy to try to
reconstruct the matrix tuple from it and confirm that it is impossible. Therefore this
signature must be excluded.

It is not surprising that only one signature turned out to be inconsistent, because
the braid group actions are originally defined for tuples of matrices. Thus the result
of braid group action on an inconsistent signature can only coincide with another
signature from any list by accident only.

10 List of signatures ofMF
(5)’s

Here we present the list of signatures ofMF
(5)’s. From this list we omit theMF

(5)’s
which are obtained from MF

(4)’s by addition of the unit matrix, and the triangular
MF

(5)’s.
For each symmetry class of orbits under (3), (4) and (5) we present only one the

representative orbit, and for each orbit—only one element (we call it start element,
though every element of an orbit can be chosen as the start element).

For each signature, we present not all 20 cells, but only all θ ’s and seven of the σ ’s,
because it is enough to reconstruct the tuple of matrices.

We divide the orbits from this list into the following types:

A: Orbit 1. A dihedral orbit of length 4 with arbitrary parameters.
B: Orbit 2. A dihedral orbit with rational parameters. Its length depends on parameters

and can be arbitrarily large.
C : Orbits 3 and 4 with one parameter.
D: Orbits 9, 10, 11. Tetrahedral orbits.
E : Orbits 12–30. Octahedral orbits.
F : Orbits 31–101. Icosahedral orbits.
G: Orbits 5, 6, 7.
H : Orbit 8.
N : The orbits obtained from MF

(4) by addition of the unit matrix. These orbits are
omitted in this list.

Orbit 1 is described in [5].
Orbits 8, 11, 17, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30, 35, 36, 37, 40, 46, 47, 52,

53, 55, 56, 58, 59, 65, 66, 67, 68, 69, 70, 71, 74, 75, 76, 78, 80, 81, 82, 83, 84, 88, 89,
91, 92, 93, 94, 95, 97, 98, 100, 101 (52 orbits in total) appear in [4].
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Also, we found that orbits 42 and 52 from Table 2 in [4] have lengths 432 and 1440
respectively. We think that in [4] possibly there are misprints in lengths of these two
orbits because these lengths repeat lengths in the adjacent rows in the table. If one fix
it, these orbit coincide with orbits 87 and 99 from the Table 9 in the present paper,
respectively.

11 Conjecture about classification ofM(n) for any n

We conject that for any n ≥ 3 there exist only the following finite orbits (including
cases n = 4, 5 which are already classified):

Type I . Orbits of triangularM(n)’s, where all matrices have a common eigenvector
(not considered in this paper; need a separate classification),

Types A, B, D, E , F . Orbits of these types exist for all n. All matrices in these
orbits belong to a subgroup of SU (2), including:

A: belonging to the dihedral group, possibly infinite. Each element of such orbit
contains twomatrices with zeros on themain diagonal and n−2 diagonal matrices;
there are n − 2 arbitrary parameters. Length of the orbit is 2n−3.

B: belonging to any finite dihedral group. There are �n/2� − 1 sub-types of such
orbits, we denote them with integer number m ∈ [2, �n/2�]. Each element of
an orbit of each sub-type contains 2m matrices with zeros on the main diagonal,
and n − 2m diagonal matrices; there are n − 2 rational parameters. The length
of the orbit is by order of magnitude as large as the common denominator of all
parameters raised to the power 2m − 2.

D: tetrahedral orbits: all matrices belong to the tetrahedral group.
E : octahedral orbits: all matrices belong to the octahedral group.
F : icosahedral orbits: all matrices belong to the icosahedral group.

TypeC : this type exists only for n = 4, 5, 6 and contains one parameter. For n = 6
it has the form

M1 =
(
X 0
1 X−1

)
, M2 =

(
X−1 −1
0 X

)
, M3 =

(−X−1 1
0 −X

)
,

M4 =
(
X 0
1 X−1

)
, M5 =

(
X−1 −1
0 X

)
, M6 =

(
X−1 −1
0 X

)
, (21)

and for n = 5, 4 reductions of this orbit.
Types G and H exist for n = 4, 5. For n = 5 there are exceptional orbits (19) and

(20), and for n = 4 their reductions.
Type K : for n = 3 arbitrary tuple of matrices.
Type M : For n = 4 in every orbit of types A, B, C , D, E , F , G, H we can replace

{θ1, θ2, θ3, θ4} with

{θ1 − δ, θ2 − δ, θ3 − δ, θ4 − δ} , δ = θ1 + θ2 + θ3 + θ4

2
,
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or with

{θ1 − δ, θ2 − δ, θ3 − δ, δ − θ4} , δ = θ1 + θ2 + θ3 − θ4

2
.

This type is completely considered in [3], and such replacements of θ ’s match the
Okamoto transformations.

Type N : for any orbit we can trivially increase n by addition of the unit matrix, or
by addition of the minus unit matrix and multiplying any other matrix by −1.

The reason why we believe in this conjecture is that for every higher n the diversity
of finite orbits becomes lower. This is because more and more conditions force orbits
to be finite. Moreover, each finite orbit for higher n (n ≥ 6) must have a reduction—a
finite orbit for lower n (e.g. n = 5). We checked this conjecture with a non-exact
computer search, but without conclusive results.

12 Discussion

By this algorithm we can construct the list of MF
(n)’s from a the list of MF

(n−1)’s.
Thus, starting from the list of MF

(4)’s, we can step by step get lists for all n.
We classified the finite orbits of monodromies under braid group actions for five

branching points in the Fuchsian system for 2×2 matrices, and made a conjecture for
such classification for six and more branching points.

Someof the orbits of fivemonodromymatrices are listed inCalligaris andMazzocco
paper [4], and also in Diarra’s [6], Girand’s [5] and Tsuda’s [7], but the full list turned
out to be rather bigger. E.g. new type orbits (5, 6, 7 in Table 9) were found.

The method of [4] is similar to the method presented in this paper. The variables
pa,b... in [4] correspond to 2 cos

(
π σa,b...

)
in the present paper.

However, many orbits from Table 9 in the present paper are absent in [4]. One
reason may be that in [4] it is declared that the authors used only the exceptional
orbits from [3] for construction. However, the orbit number 9 from the present paper,
which is considered in detail in Sects. 5, 6, construction of which needs not only the
exceptional orbits from [3], but also orbits with parameters, is absent in [4]. Another
reason may be a limitation of the arithmetical method employed in [4], which can

handle only explicit numbers in radical form, e.g.
√
2 and

(
1 + √

5
)

/2. Therefore,

the orbits 5, 6, 7 from the present paper, for which p values include seventh roots of
unity, which cannot be expressed in radicals, are also absent in [4].

The triangular cases where all monodromy matrices have a common eigenvector
and can be simultaneously put into lower triangular form, were classified by Cousin
and Moussard in [8]. We left these results outside of the present paper, because the
method used in this paper is not applicable to such cases.

Although the proof uses the computer, it is an exact proof, because the computer
was tasked with searching through a finite number of options using integer arithmetic
(although too large for a human to check in a reasonable amount of time). The program
was monitored for abnormal situations and no such situation ever happened. In the end
the procedure finished regularly after exhausting of the possibility space. The proof
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of the conjecture for six and more matrices must be analytical, but we expect it to be
not too complicated, because under our conjecture the list of orbits for six and more
matrices is rather uniform.

Each algebraic solution of the Garnier system corresponds a finite orbit of M(n).
That’s why we think that each orbit ofMF

(n) with its tuple of exact values of θ ’s may
generate one algebraic solution of the Garnier system, or a finite number of algebraic
solutions corresponding to the symmetry group of thisMF

(n). The solutions for which
one of θ ’s differs by 2 from a given solution, can be obtained from it with an algebraic
transformation, analogous to Bäcklund transformations group, see [9].

Conclusions

The finite monodromies of the Fuchsian system for five 2 × 2 matrices have been
classified, except for the case in which all monodromy matrices have a common
eigenvector.

The conjecture about such classification for six and more matrices is formulated.
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